Part A: Understanding Equilibrium

True or False with Discussion

\qquad The Equilibrium constant (K) tells us whether reactants or products are favored in a reaction.
\qquad Equilibrium implies that both the reactants and products are at equal concentrations.
\qquad Equilibrium is static (nothing happens at equilibrium).
If False, what is happening then at Equilibrium?
\qquad To complete an equilibrium problem, the reaction must be balanced.
Why?
\qquad Solids and liquids are NOT included in the equilibrium constant expression.
Why?
\qquad
\qquad
\qquad K_{c} is used for molar concentrations and K_{p} is used when partial pressures are given.
Are they equal? Discuss your answer.

Part B: Writing Equilibrium Constant Expressions and Calculating K

1. An aqueous solution of ammonium chloride and sodium hydroxide are mixed together and allowed to equilibrate. Predict the products, write the net ionic equation, and write the K expression for the reaction.
2. Calculate the value of K_{c} for the reaction below

$$
2 \mathrm{~N}_{2} \mathrm{O}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{c}}=?
$$

using the following information.
(1) $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$
$\rightleftharpoons \quad 2 \mathrm{NO}_{2}(\mathrm{~g})$
$\mathrm{K}_{1}=4.6 \times 10^{-3}$
(2) $1 / 2 \mathrm{~N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{NO}_{2}(\mathrm{~g})$
$\mathrm{K}_{2}=4.1 \times 10^{-9}$
(3) $2 \mathrm{~N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{~N}_{2} \mathrm{O}(\mathrm{g})$
$\mathrm{K}_{3}=1.2 \times 10^{-35}$

These three equations (1-3) can be combined (after multiplication or reversing) to get the desired reaction. Use the spaces below.
(1)
(2)
(3)

$$
2 \mathrm{~N}_{2} \mathrm{O}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \leftarrow \rightarrow 2 \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{c}}=
$$

Part C: Calculating Concentration when the Equilibrium Constant is known

3. The reaction below is ran in a 1.0L flask.

$$
\mathrm{SO}_{2}(\mathrm{~g})+\mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{SO}_{3}(\mathrm{~g})+\mathrm{NO}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{c}}=2.9
$$

a) Write the equilibrium constant expression for the reaction.
b) Given the K_{c} above, what does that tell you about the reaction at equilibrium? Reactant favored or product favored?
c) Find the amount of NO_{2} that must be added to 5.0 mol of SO_{2} in order to form 2.6 mol of SO_{3} at equilibrium. Fill out the shaded boxes and then solve for the amount of NO_{2} initially present. Some of the ICE table has been filled out for you already.

