Name:

Part A: Understanding Equilibrium

True or False with Discussion
The Equilibrium constant (K) tells us whether reactants or products are favored in a reaction.
Equilibrium implies that both the reactants and products are at equal concentrations.
Equilibrium is static (nothing happens at equilibrium).
If False, what is happening then at Equilibrium?
To complete an equilibrium problem, the reaction must be balanced.
Why?
Solids and liquids are NOT included in the equilibrium constant expression.
Why?
K_c is used for molar concentrations and K_p is used when partial pressures are given.
Are they equal? Discuss your answer.

Part B: Writing Equilibrium Constant Expressions and Calculating K

1. An aqueous solution of ammonium chloride and sodium hydroxide are mixed together and allowed to equilibrate. Predict the products, write the net ionic equation, and write the K expression for the reaction.

2. Calculate the value of K_c for the reaction below $2 N_2O(g) + 3 O_2(g) \rightleftharpoons 2 N_2O_4(g)$ K_c = ? using the following information.

(1)	$N_2O_4(g)$	\rightleftharpoons	2 NO ₂ (g)	K ₁ = 4.6 x 10 ⁻³
(2)	$\frac{1}{2} N_2(g) + O_2(g)$	\rightleftharpoons	NO ₂ (g)	K ₂ = 4.1 x 10 ⁻⁹
(3)	$2 N_2(g) + O_2(g)$	\rightleftharpoons	2 N ₂ O(g)	$K_3 = 1.2 \times 10^{-35}$

These three equations (1-3) can be combined (after multiplication or reversing) to get the desired reaction. Use the spaces below.

(1)

(2)

(3)

 $2 N_2O(g) + 3 O_2(g) \leftrightarrow 2 N_2O_4(g)$ K_c =

Part C: Calculating Concentration when the Equilibrium Constant is known

3. The reaction below is ran in a 1.0L flask.

$$SO_2(g) + NO_2(g) \rightleftharpoons SO_3(g) + NO(g)$$
 $K_c = 2.9$

- a) Write the equilibrium constant expression for the reaction.
- b) Given the K_c above, what does that tell you about the reaction at equilibrium? Reactant favored or product favored?

c) Find the amount of NO₂ that must be added to 5.0mol of SO₂ in order to form 2.6 mol of SO₃ at equilibrium. Fill out the shaded boxes and then solve for the amount of NO₂ initially present. Some of the ICE table has been filled out for you already.

I(M)	5.0	? (we are trying to solve for this)	0	0
C(M)				
E(M)			2.6	